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Fig.4. Explanation in the text.
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PATTERNS AND FEATURES AS MANIFOLDS:
FACES IN IDENTIFICATION AND CATEGORIZATION

James },‘ Townsend & Michael J. Wenger
Indiana University

Abstract

The present chapter considers some of the possibiliﬁe§ ‘associate'd .w1thot?e use
of infinite dimensional spaces in perceptual and.cogmhve theo'nzmg.d
particular import and application are quest.io.ns in face Perceptnon an A
cognition, a domain in which the use of infinite dlmegﬁlonal spac:rs. wou
appear particularly advantageous, give1.1 the complexities (gec;;neh 1;:,d S
perceptual, and cognitive) associated v.v1th faces (more gen‘era1 y,d eads).
outline suggestions for initial applications, both mathematical an

experimental.

i merous examples in perception and cognition in whish the
oDl:;zgeotfl}i\F:rmation procefsing coI:ﬂd not be simple finite dime‘nsmnacll vector
spaces, much of our theory and technology of measurement‘, scaling an Y.
psychophysics is devoted almost entirely to thes‘e. (In'te.restlngly, a; 'ant;s‘l Vi‘i.”
outside of the assumption of orthogonality and imposition of a me bl:, (.’ “:r
assumptions of vector spaces are hardly ever employed; but that 1; yfomniwA
present scope of discussion.) Townsend and Thomas' (1993) pri)lv1 e ret erences
to exceptions to this general rule. In no way do we dls‘pa‘irag.e t e greta -
importance of these spaces. However, we do be}1g\{g it is high t:ime o enlarg
our perspective to include some of the rich possibilities that modern

mathematics offers.

As an example that is intended to guide ourselves as well as to ilhlust'rato what
we mean, we call on face processing. We propose as a hypothesu;‘ ft;mt frade
identification of faces and categorization may follon so'mewhaF di (;re:\ «‘ (,i
First, though, we need to sketch in, in a mostly qu?lltahyg fashion, tf e 'yp(
mathematics that are applicable. Clearly, there is insufficient space for any

degree of detail.
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We start with the non-controversial concept of mappings (loosely, functions)
between spaces to represent various levels of perceptual and cognitive
processing. What these mappings can preserve, distort, etc., depends not only
on the domain and range spaces, but the properties of the map, of course.
Hence immediately we see that even the entire image (or more abstract
representation as the case may be) is a pale simulacrum of the original object in
the real world . That is, even at a relatively macroscopic level, much
information must be lost in energy transduction of the narrow band and type of
energy impacting the sensorium, not to mention the coarser and finer grained
depictions (e.g., molecular and atomic description) that are unavailable to our
perceptual mechanisms.

We then, again for most folks in an indisputable way, view a feature of an object
48 a map of the original object to some space or subspace. In this sense, the

global perceptual object is simply the maximal feature representable by the
perceiver,

Now we can get a bit more specific and take up the case of face perception. We
must naturally ignore the great number of interesting theories and experiments
in this burgeoning sphere (e.g., Bruce, 1988; Bruce & Humphreys, 1994; Tanaka
& Farah, 1991) in order to focus on our objective. Suppose that faces, or more
generally heads, as perceptual objects are manifolds (to avoid pedantry, we will
drop constant reference to the original objects vs. their perceptual counterparts
#xcopt where necessary). What are manifolds? Basically, they are spaces, which
locally (0., Including a neighborhood around an arbitrary point) are
Fuclidean, that is, can be mapped in a 1-1, bicontinuous and into a region of a
finite dimensional FEuclidean vector space. With a bit more structure, the
differential and integral calculus can be brought into the picture and we then
spwak of differential manifolds and differential geometry. (For those interested,
the difference between differential geometry and differential topology is that
the latter requires, and utilizes geometric topics such as angle between vectors,

whereas the latter depends only on more general spatial aspects ; but there is
much cross-talk across the areas.)

That a head, as original object and provisionally as perceptual representation
can be pictured as a manifold follows immediately from approximating it by a
continuous distortion of a sphere (ignoring, if their are any algebraic topologists
in the audience, the “tear” distortions created by holes; not a crucial distortion
of the facts for present purposes).

Now, a fair way into any decent text on differential geometry one encounters
the concept of the first fundamental form (in a book on tensors, usually earlier
than that). A “form” here is a kind of map that carries vectors into the real.
numbers, in a sense a kind of measure (e.g., feature?) on the manifold. There are
several ways in which to conceive of this form. For our purposes, perhaps the
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most direct approach is to think of it as a means of computing lengths of paths
on the manifold (which of course may be very non-flat). Recall that even in
ordinary calculus, we treat velocity as a vector and calculate path length as an
integral of that velocity over a path. In general, we first have to map a local
region of our manifold info a Euclidean space, if we want to take an ap‘pro&‘ach
that includes specification of coordinates (it is possible to carry out denvahqns
without these in most cases). However, certainly a head can be embedded (in a
technical as well as colloquial sense), in a three-dimensional space, so we can
just use those coordinates.

In differential manifolds, we can also view velocity as a vector, in this case as a
three-dimensional vector, but how we convert this to a metric that takes into
account the special properties of our particular manifold is where the first
fundamental form comes in. Basically, we have this form written as

A = gij %% , where it is plain to see that the velocities play an important role,
ot .
The neat thing, though, is the 8ij, which tells how the space is changing as we

move from point to point. (Actually, according to convention, the 6t. s are
usually omitted, since we can integrate across the space without explicit account
of them, as in line integration in advance calculus!). This first fund'amental
form not only delivers path lengths, it virtually completely determines the so-
called intrinsic characteristics of a manifold. For instance, if we lived on a
planet which was forever fog-enshrouded and assuming we had no space
exploration at our finger tips, all that we could ever determine about the surface
aspects would be specified by this form. Nevertheless, this very powerful
feature” is not sufficient to explain face identification. For instance, a sh.eel of
paper laying flat on a table and the same sheet of paper rolled .into a cylinder
possess the same first fundamental form; yet, we can tell the difference!

Neglecting for the time being the problem of just noticeable differences as well
as obvious constancies such as translation and dilation invariances, we can ask
what would be required for complete geometric congruence (in the same precise
sense that we learned in high-school geometry). The answer is the somnd.
fundamental form. We haven’t much space to explicate this form, but basically,
itis an extrinsic function, therefore one that is not completely determined by the
first fundamental form, or map (incidentally also one that maps pairs of vectors
as does the first form) that measures how any vector on the manifold is
changing as we move along a path. In this sense, it is measuring something like
our concept of acceleration which is itself fundamentally related to curvature of

X h
the manifold. Its expression is ¥, = f;; %—j, which looks rather like the first

fundamental form. However, f;; is gauging how a vector that is orthogonal

(i.e., normal”) to the surface” of the manifold (the latter being an extrinsic, not
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an intrinsic, notion) is varying as one move in different directions away from
the current position.

Anyhow, agreement of these two forms together is sufficient to ensure
congruence. Now of course, these are only two of a very large number of
structurally equivalent) encoding possibilities. Nevertheless, they do permit the
description of shapes, or much more abstract spatial objects, in a way not
imprisoned by finite dimensional vectors (although naturally the latter play a
dynamic role in the overall proceedings of differential geometry), and in a way
that completely specifies an object. We also know, of course, that many
perceptual studies have been accomplished that demonstrate deficiencies of
observers and therefore an ideal models of this sort, in their ability to
veridically perceive a number of aspects of three-dimensional space (e.g.,
Braunstein, Liter, & Tittle, 1993; Todd, 1989). Nevertheless, we believe to make
progress in object and face cognition, that we must work with the tools at hand.
As time goes by, the experimental confines can be built into emerging models,
possibly employing new or at least different geometric and topological
concepts.

We plan to begin experimentation implementing and testing models based on
differential geometry and other relatively novel mathematical objects such as
function spaces and relevant metrics on those spaces. One goal will be to start
determining just-noticeable-differences and other measures of resolution, using
such notions, in face perception.
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